
August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 1

Yechiel M. Kimchi
The Technion, CS Faculty

VLSI – Verification, Logic Synthesis, Israel Ltd.

In Search of Bug-free Software

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 2

• Copyright © 2010–2017 Yechiel M. Kimchi

This presentation is an ongoing work that was first presented in
writing on 2010[4]. Most of the detailed ideas that appear here
were developed by many people and have appeared years ago.
However, a few detailed ideas and the compilation of all of them
into a coherent structure – especially the abridged list of coding
rules and their rationale by the meta-rules – are original.
The presentation in general, and in particular the original parts,
are copyrighted under the terms of the GFDL v.1.3 as in
https://www.gnu.org/licenses/fdl-1.3.en.html
or later. Permission is granted to copy, distribute and/or modify
this document under the terms of the GFDL with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 3

http://programmer.97things.oreilly.com/wiki/index.php
/Coding_with_Reason

The First Writing

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 4

But Earlier (the motivation)

More important =
Affects more people

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 5

Before

• The program that worked only on Wednesdays

• Accidents do not happen – they are caused
• Reckless Parking
• Clog intersections

• The Prisoner’s Dilemma
• Naivety (for changes by individuals)

Writing quality code

is just a case of

Practicing Good Manners

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 6

My main interest is SW quality

• From the theoretical point of view

– The abstract principles that guide the quality

• The (counter-)examples will be practical

– Coding, but also Psychological, sociological, legal

My claim: practice fails when it lacks theory

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 7

Why Software is So Bad? (cont.)

An Interview w. B. Stroustrup (2006) [5]
Q. “Why is most software so bad? …”

BS: “… if software had been as bad as its reputation,

most of us would have been dead by now.”

Q. “How can we fix the mess we are in?”

BS: [a full page] “In theory, …: educate our software developers

better, … Reward correct, solid, and safe systems.

Punish sloppiness. In reality, that’s essentially impossible.

People want new fancy gadgets right now and reward

people who deliver them cheaply, buggy, and first. …”

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 8

General Purpose SW is Buggy

What about safety-critical systems?
I’ll concentrate on them only

I care about the SW tool itself
The code, including design

I care about the process only as long as it directl y affects the code itself

Concentrating on

Correct , Robust , and Efficient

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 9

How to Review the Coding Process?

I am reluctant to read M-LOC

So I have focused my attention on well known
Coding Standard documents

Coding standards [from Wikipedia: Coding conventions]

Where coding conventions have been specifically designed to produce
high-quality code, and have then been formally adopted, they then become
coding standards. Specific styles, irrespective of whether they are
commonly adopted, do not automatically produce good quality code. It is
only if they are designed to produce good quality code that they actually
result in good quality code being produced, i.e., they must be very logical in
every aspect of their design - every aspect justified and resulting in quality
code being produced.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 10

How to Review the Coding Process?

I have reviewed

• MISRA-C (Motor Industry Software Reliability Association)

• JSF AV C++ Coding Standards (F-35)
(Joint Strike Fighter Air Vehicle)

• Linux kernel coding style
• Google C++ Style Guide
• GNU Coding Standards

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 11

How to Review the Coding Process?

I have reviewed

• MISRA-C (Motor Industry Software Reliability Association)

• JSF AV C++ Coding Standards (F-35)
(Joint Strike Fighter Air Vehicle)

• Linux kernel coding style
• Google C++ Style Guide
• GNU Coding Standards

What should those be compared with
in order to find what they miss?

Let ’s go for the ideal

The Desired Code

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 12

Software

An External View of Software

The Structure of Software

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 13

Software

An External View (cont.)

The Structure of Software

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 14

Software
Zoooom in

An External View (cont.)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 15

What is Software? (cont.)

Zoooom in
Software

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 16

What is Software? (cont.)

Software Is fractal

Finite – but unboundedly deep

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 17

Fractals (explanation)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 18

Expectations from Quality Software

Human cognition has limited capacity

Same thing with computer’s memory

Software state-space is too big for both

As long as programmers write code:

They know the algorithms, but they err

So they have to test and they have to modify

������

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 19

Nomenclature in Quality Software

Software is Fractal like

What are the recurring Parts ?

Software

Component
Library

Module
ADT

Class
Function/Procedure

Command (loop/conditional)
Expression (operator/function call)

Where does a packagefit in?
Some of the inclusions may be reversed

An atomic (leaf) part , is a Section of code

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 20

Expectations from Quality Software

What is Common to these Parts?

Each one of them gives an abstract service

But this is just the beginning

Meta-Meta-Rule:

Software is a collection of parts

that are governed by common requirements

���	
	�	�

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 21

Common Knowledge

In practice, they are not

In theory,

theory and practice are the same�����������	
��
���
������������������	
��
���
������������������	
��
���
������������������	
��
���
�������

���� �����������	�����������������	�����������������	�����������������	������

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 22

A Spoiler

• I want to explain my intentions
– I’ll use examples, related to subjects that I skip
– Both appear inLinux Kernel Coding Style

• Linux Kernel bans using ������������	���
� ��� unsigned u_val �����	���
	���� double
– Should we change the name tod_val ?
– But how about price p_val ?

JoelOnSoftware: Making Wrong Code Look Wrong explains it

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 23

A Spoiler (Cont.)

• Linux Kernel accepts goto ���
�	��
�
�

– I totally agree with their criteria
– But it’s a slippery slope – be careful

• Here is an industrial example:
Status Class::set_status(int id, State state)
{ Status status = OK;

Container::const_iterator itr = cont_.find(id);
if (itr == cont_.end()) {

status = NOT_FOUND;
goto bail;

}
status = itr->second->act(state);

bail:
return status;

}

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 24

A Spoiler (Cont.)

• Linux Kernel accepts goto ���
�	��
�
�

– I totally agree with their criteria
– But it’s a slippery slope – be careful

• Here is the code without goto :

Status Class::set_status(int id, State state)
{ Container::const_iterator itr = cont_.find(id);

if (itr != cont_.end()) {
return itr->second->act(state);

}
return NOT_FOUND;

}

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 25

Expectations from Quality Software

Service = Interface + Implementation

Interface = Preconditions + Post Conditions
. - Invariants ��� �

Implementation = Correct

+ As Independent As Can Be (*)

(*) Independent Commands/Expressions ?
An Opportunity for Concurrency

What is Common to these Parts? ���	
	�	�
�

�
�	

	������������������	����
�

��
	������������������	����
���
	������������������	����
���
	������������������	����
���
	������������������	����
���
	������������������	����
�

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 26

Requirements of a single Part

• A Part should be dedicated to a single task
– Easy to comprehend (Separation of concerns)

• A Section should be short and simple
– Most sections control other parts
– Easy to comprehend

• A Part should have clear boundaries
– Easy to describe begin/end states
– Easy to define pre/post conditions

– Non Sections, have the basics of it for free

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 27

Requirements of Parts– Independence

• Parts are as independent of one another as possible

– Easy to comprehend

– Easy to modify (fix or enhance)

– Easy to reuse

– Easy to test

(*) For the four bullets above,

we only have to know the few

it directly depends on

(*)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 28

Requirements of Parts– Independence

• Parts are as independent of one another as possible

High dependency

does not make your program wrong –

it just makes it harder to make it right

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 29

Expectations from Quality Software

Meta-Rules: Requirements from a service

• Independence (Implementation)

• Separation (Implementation)

• Controlled communication (Interface)

• Simplicity (*) (Implementation)

I ignore uniformity rules, which are mostly stylistic

���������	�
���
��
������	��

��� ������ ��	�����������

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 30

Simplicity (*) A Word by a CS Icon

“ Simplicity and eleganceare unpopular because
they require hard work and discipline to achieve

and education to be appreciated.”

Edsger W. Dijkstra, 14 June 1989

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 31

Explaining the Meta-Rules

Independence, separation, simplicity,

controlled communication

Independence ��� � Modularity and downward

separation ��� � Precondition for independence

��� � Functions

���������	��	��
�����������������������

�������������	

VS.

If a function contains two loops, it is almost impo ssible
to test one of them separated from the other

�����	�������
��������
��	�������	�������
��������
��	�������	�������
��������
��	�������	�������
��������
��	��

reusability

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 32

����	�	�

Explaining the Meta-Rules (cont.)

Interface ��� � Explicit communication

VS.

��� � Global data is used judiciously

����	�	�

Simplicity ��� � External by the above three

��� � Internal is context dependent

An abstract rule: No nested sections ��������������
�����������������������������
�����������������������������
�����������������������������
���������������

������������������������

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 33

Safety-Critical Standards Break the Rules

MISRA-C (2004) has [Rule 8.7] :
• Requiring to minimize

usage of global variables
• “Whether objects are declared

at the outermost or innermost

block is largely a matter of style”

• Namely, reducing the dependency
among neighboring, or nested

blocks is a matter of style [Oops?]

int main()
{ int sum = 0, i = 0 ;

while (i < 100) {
int num;
scanf("%d" , &num);
sum += num;
++i;

}
printf("%d\n" , sum);
return 0;

}

First semester,
end of 1 st lecture

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 34

OOPS (Cont.)

In “C Unlished” (SAMS, 2000), p. 206, we see

int main(void)
{

size_t len = 0;
char buffer[1024] = {0};
if (fgets(…) != NULL)
{

len = strlen(buffer);
printf(…);

}
return 0;

}

Warning: ‘len’ is
assigned a value
that is not used

After a long discussion,
on p. 208 it’s written:

“If you ever find a style that will,
for any program, produce no
warnings at all under all ANSI C
compilers at their pickiest warning
level, the world would be very
glad to hear from you.”

In this case:
Declare len
inside if block

size_t

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 35

Misguided Coding Standards Guides

JSF-AV C++ (2005) has (# is rule’s no.) :

• #1 Any one function (or method) will contain no mor e

than 200 logical source lines of code (L-SLOCs).

- Rationale: Long functions tend to be complex

and therefore difficult to comprehend and test.

• Fact: A function with 200 lines of logical (actual) code,

breaks all four meta-rules above.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 36

Misguided Coding Standards (Cont.)

More from JSF-AV C++ (2005) :

• #3 All functions shall have a cyclomatic

complexity number of 20 or less

- Rationale: Limit function complexity.

I am not very good at visualizing cyclomatic complexity,

so I went to the original paper that had introduced this concept:

����������������	 			
����

����

����

����

���������
���������
���������
���������

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 37

Visualizing Cyclomatic Complexity

McCabe, 1976

The one on the right
is measured 19: It
has 11 backward arcs
(all the curved ones on
the right), some only
partially overlapped –
meaning they must
be goto s, not loops.
Go back to rule #3.

The diagrams are from the original paper defining cyclomatic complexity.

The one on the left
is measured 8
(no backward arcs).

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 38

“I Robot” – the movie

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 39

“I Robot” – the movie

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 40

“I Robot” – the movie

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 41

Unrelated to the above

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 42

Before we translate theory to practice
Before we derive rules from meta-rules

There are computer-scientists that claim that
Programming is a Tool

My reaction is:

• You are right , but the difference between us is

• You think of it as the plumber ’s hammer and chisel
– Break the wall, fix the leak and cover.

• I think of it as the sculpturer ’s hammer and chisel
– If you don’t use it the right way, you’ll break the marble.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 43

Practical Rules – Independence

Independence ��� � No goto ��

����������

Did you know? There are three versions of goto

• Control: The well known goto command
- Allows two sections to mix their commands

• Value: Global variables
- Allows several sections to share values
- Using a value created by an unknown section

• Type: Using ptr/ref casting
- It’s not a conversion, it is an assumption

(*)

(*)

Which one
is worst?

(*) Thanks to Marshall Cline, owner of C++ FAQs

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 44

Practical Rules – Independence

a cross-module goto or a global variable

ModuleA

ModuleB

ModuleA

What’s Worse?

ModuleB

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 45

Practical Rules – Separation

Separation

Two common techniques

for separation are hiding

& hiding implementation

Separationis the principal technique
for achieving Independence

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 46

Practical Rules – Separation

Separation ��� � Functions ��	
	
!�	������
���	�

The Biggest Misconception

About Functions (��� �)

(��� �) Except interface functions

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 47

Practical Rules – Separation

The Purpose of Functions is

to Eliminate Code Duplication

Separation ��� � Functions ��	
	
!�	������
���	�

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 48

Practical Rules – Separation

Separation ��� � Functions ��	
	
!�	������
���	�

The Purpose of Functions
is to make the Code

Easier to Understand
• By naming a piece of code (saving comments)

• By hiding its implementation (high level code)

• By making pre/post-conditions explicit

– Also allowing (partial) isolation for testing

• By making the hosting code/function shorter

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 49

Practical Rules – Separation

Separation

• Functions are for easy understanding

• Separate different concerns (aka SRP)

• The evil of code-duplication

• Encapsulation (using functions/classes/modules)

• No getters (Tell, don’t ask)
The lesson of Ariane5

(*)

(*)

What about performance?

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 50

Principles for Interface

• Interface design is very delicate
– Both separates and connects entities (contradictory)

– Modifications are painful (expansions are OK)

• Should be easy to use (best: intuitive)
– Helps achieving designed operations

– Prevents misusing it (error or malice)

(*)

JoelOnSoftware: Leaky Abstractions(����)

Strong
typing

Dependency
inversion

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 51

Practical Rules – Interface

Controlled communication (Interface)

• Minimal and complete (S. Meyers Eff. C++ 2nd)

– Minimize ����	 (#functions / #parameters)

– Minimality and completeness are context dependent

• Minimize number of users (
��
 = |I|*|U| = ���� ���� i ���� �������� Ui)

• Make pre/post-conditions explicit

• Interface should preserve invariants

– No setters
What about performance?

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 52

Principles for Simplicity

simplicity is the most intangible characteristic

• Subjective (A novice vs. an expert)

• Subjective (habits and taste)

• Should be based on culture and idioms
– Defined by experts, not by majority

– Culture and idioms are not stable (The singleton case)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 53

Misguided Simplicity

“Write your code in a form that can be maintained

by the less experienced member of the project”

���������	
�����

�������������

� �������	
���

������

�������
�
���
����	��
�����

� ���
�����
�
�������
���
�
���
��
����
�����
�����	��

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 54

Simplicity is Difficult

“The present letter is a very long one,

simply because I had no leisure to make it shorter.”

Blaise Pascal

Edsger W. Dijkstra:

�����
��������������
�
����
���
�����������

	
���

���
���
����
�����������������
������
��������
�
�

����
������������	
�����
����
���

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 55

Practical Rules – Simplicity

Simplicity

• Short functions and single task (aka SRP)

• Shallow nesting – low (cyclomatic) complexity

• Minimize function’s side-effect
– Avoid global variables

• Visible side-effects - via interface

• “Comment only what the code cannot say”

What about performance?

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 56

Coding Standards Guides

I argue that coding standards documents:

• Miss most of the aforementioned coding rules

• Do not distinguish between essence and style.

Indeed, they are more about low-level style
– e.g., uniformity and language don’t s + mini-rules.
Those are very important in practice,
but they do not replace the general rules.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 57

Coding Standards Guides

Of all the rules above MISRA-C (2004) has:

• (adv) Restrictions on pointer casting

• No goto/continue (break is restricted)

• Avoid using unnecessary global data.

All of them are goto related.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 58

Coding Standards Guides

Of the rules above JSF-AV C++ (2005) has:

• Class interface should be complete and minimal

• Const member functions are better

• (adv) usage of invariants

• No goto/continue (break is restricted)

• (adv) avoiding global variables

• Restricts down-casting (and casting in general)

Last three of the six items are goto related

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 59

How many general rules are missing?

Why are so many rules missing?

And I have shown just about half of what I have

OTOH

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 60

Coding Standards Guides

MISRA-C (2004) has:
14.7 (req) A function shall have a single point of exit

at the end of the function.
14.9 (req) An if (<expr>) construct shall be followed

by a compound statement.
14.10 (req) All if … else if constructs shall be

terminated with an else clause.

See next slide
JSF-AV C++ (2005) has :

AV Rule 113 (MISRA Rule 82, Revised)
Functions will have a single exit point.

AV Rule 192 (MISRA Rule 60, Revised)
All if, else if constructs will contain either a final else clause
or a comment indicating why a final else clause is not necessary.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 61

Do we really want single exit?

bool IsPrime(int n)
{

if (n < 0) n = -n;
if (n < 2) return FALSE;
if (n == 2) return TRUE;
if (n % 2 == 0) return FALSE;

int bound = Round2Whole(sqrt(n) + 1);
for (int div = 3; div <= bound; div += 2) {

if (n % div == 0) return FALSE;
}
return TRUE;

}/* End - IsPrime() - */

What is the cost of
making this function
following the rules ?

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 62

Yet, they have

MISRA-C (2004):
•17.6 (req) The address of an object with automatic

storage shall not be assigned to another object tha t
may persist after the first object has ceased to ex ist.

JSF-AV C++ (2005):
•#111 A function shall not return a pointer

or reference to a non-static local object

See next slide

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 63

Coding Standards Guides

(*)The first day I’ve got the new, 3rd edition, of Stan Lippman’s C++ Primer ,
I found three related errors: an automatic variable returned by reference.

Stan’s response to my e-mail was not just apologetic – he couldn’t understand
how that error eluded both his review as well as the technical reviewers.

Do you think that a rule such as the above white

board white could have helped them?

Coding standard is about conscious activity
not about unintentional errors

– Such rules belong to learning
– Most are checked by lint-like tools

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 64

Some Missing Rules

Linux Kernel’s contains 8 of the 26 Rules.

Some of the missing ones are:

• Minimize global objects (not just variables)

• Minimize scope (not just variables)

• Minimize side-effects (not just functions)

• Minimize interface (interface is minimal)

• Minimize surprise (explicit pre/post-conditions and invariants)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 65

A general suggestion

Separate Coding Style Guides to three parts:

1. Uniformity rules – related to perception only

2. Knowledge rules – pitfalls of the language etc.

3. Design + Programming rules – language indep.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 66

PlumberStatus
Tap::open_tap(const string& tap_name)
{

LockSys<Mutex> LL(tap_lock_);
TapMap::const_iterator it =

taps_.find(tap_name);
if (it == taps_.end()) {

return PLUMB_TAP_NOT_FOUND;
}
it->second->operate(true);
return PLUMB_OK;

}

Example: What’s Wrong 1

A Simple Industrial Example

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 67

PlumberStatus
Tap:: close _tap(const string& tap_name)
{

LockSys<Mutex> LL(tap_lock_);
TapMap::const_iterator it =

taps_.find(tap_name);
if (it == taps_.end()) {

return PLUMB_TAP_NOT_FOUND;
}
it->second->operate(false);
return PLUMB_OK;

}

Example : What’s Wrong 2

What’s the difference?

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 68

Examples and Observations

What’s The Problem?
• Is it code duplication ?

– Let’s see:
• After extracting out the common parts we get

PlumberStatus
Tap::open_tap(const string& tap_name)
{

LockSys<Mutex> LL(tap_lock_);
if (!tap_found(tap_name)) {

return PLUMB_TAP_NOT_FOUND;
}
it ->second->operate(true);
return PLUMB_OK;

}

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 69

Code Duplication is just the Symptom

• Delegation (of a function call) after checking

• Wrapping: Transforming boolean value => name

The real problem:
Each one of them has two tasks

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 70

Single Task Implementation - Delegation

PlumberStatus
Tap::operate_tap(const string& name, bool open)
{ LockSys<Mutex> LL(tap_lock_);

TapMap::const_iterator it =
taps_.find(tap_name);

if (it == taps_.end()) {
return PLUMB_TAP_NOT_FOUND;

}
it->second->operate(open);
return PLUMB_OK;

}

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 71

Single Task Implementation – Wrappers

inline PlumberStatus
Tap::open_tap(const string& tap_name)
{ return operate_tap(tap_name, true);}

inline PlumberStatus
Tap::close_tap(const string& tap_name)
{ return operate_tap(tap_name, false);}

With appropriate design, these may be made

non-member non-friend functions

Both functions are inline d, so they consume
neither executable space nor executable time

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 72

The Original has a Third Problem

It enforces awkward usage

if (activation_required) {
open_tap(name);

} else {
close_tap(name);

}

Instead of

operate_tap(name, activation_required);

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 73

The SW Process

�
�
��������
���������������
����������
	
�
���
������
�
�������
����
�
�����
�
���� ��
�
���
��������
��

� ���
�
���������
����		�
��
����
������
� �������	
 	
�
����
�������������!

� "����!�������#$%&

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 74

Approaches to Software Quality (cont.)

• Processes mainly aim at collaboration
level, from a team – up to a corporation.

• The basics of software development is
done at the personal level, individually.

• Therefore, a software development group,
no matter its size, resembles a team of
chess players – not a football team.

An Important Observation

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 75

SW Obstacles

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 76

Deadlines: Quality is Last

• Relies on “bugs are inevitable” perception
by the public.

• Delaying features seems more appropriate

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 77

Next Quarter’s Bottom-line

As unpleasant as it is

• Politicians look forward to next elections
– Most of the time more than a year ahead

• CEOs look forward to next quarter
– Most of the time less than two months

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 78

Fighting Bugs (any resemblance to reality is imaginary)

Imagine two SW-engineers that get to share an
assignment for twelve weeks. The first one
finishes his part in ten weeks – he gets a (+)
for quick coding. Then he tests his part and
finds, say, 40 flaws, and he fixes them in six
weeks. He then gets another (+) for quickly
fixing many bugs.
The second is slower, and finishes coding in
fourteen weeks – he gets a (–) for slow coding.
While testing he finds three nasty bugs, and it
takes him two weeks to fix them. He then gets

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 79

Process vs. Knowledge

Here is a mere speculation: Why companies are
ready to spend so much money on processes?
Several orders of magnitude when compared to
what they spend on improving their staff’s
qualifications? Start-ups excluded. If you
follow the money, a simple answer pops-up:
When engineers leave the company to another,
they take their knowledge with them – but they
cannot take the process with them.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 80

The “Conspiracy” Argument

Mark Minasi “The Software Conspiracy”

• Would you accept buggy hardware?
– No one does (remember the Pentium bug)

• Will the judicial system help?
– Greedy lawyers blur distinction between error and n egligence in

medicine, and cause bad defensive medicine.

• Will regulation help?
– Bell was divided to seven companies (process took 1 974 – 1984)

– Microsoft case (1998 – 2004) failed, after a recusal of the original judge

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 81

Q & A
yechiel.kimchi@gmail.com

"��
#��$��

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 82

Sources

[1] Charles C. Mann “Why software is so bad?” MIT
Technology Review, 2002 http://www.technologyreview.com

/featuredstory/401594/why-software-is-so-bad/

[2] Robert N. Charette “Why Software Fails”
IEEE Spectrum 2005

http://spectrum.ieee.org/computing/software/why-software-fails/

[3] Mark Minasi, “The Software Conspiracy”,
Mcgraw-Hill, 1999

[4] Y. Kimchi, “Coding with Reason”, in “97 Things Every
Programmer Should Know”, ed. K.Henney, O’Reily 2010

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 83

Sources (cont.)

[5] Beth Layman “An Interview w. Jerry Weinberg”
Software Quality Professional, v.3 no.4, 2001 ASQ

http://www.stickyminds.com/interview/software-
engineering-state-practice-interview-jerry-weinberg

[6] J. Pontin, “The problem with Programming: Interview w.
B. Stroustrup”, MIT Technology Review, 2006
http://www.technologyreview.com/news

/406923/the-problem-with-programming

[7] Misra-C: http://www.misra.org.uk/

Retrieved July 30, 2015

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 84

Sources (cont.)

[8] http://caxapa.ru/thumbs/468328/misra-c-2004.pdf
Retrieved January 20, 2017

[9] http://www.stroustrup.com/JSF-AV-rules.pdf

Retrieved July 30, 2015

[10] S. Summit, (Retrieved, July 30, 2015)
http://www.eskimo.com/~scs/readings/software_elegan ce.html

[11] Dijkstra E. W.: Letters to the editor: goto statement
considered harmful. Comm. ACM, V.11:3, 147-148 (1968)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 85

Sources (cont.)

[12] Wulf W., Shaw M.:Global variable considered harmful.
ACM SIGPLAN Notices, V. 8:2, 28-34 (1973)

[13] S. Saariste: Resist the temptation of the singleton pattern.
In “97 Things Every Programmer Should Know”,
ed. K.Henney, O’Reily 2010

[14] B. Klemens, MATH You Can’t Use,Patents,Copyright,and
Software. Brookings Institution Press, Washington,D.C. 2006

[15] https://www.kernel.org/doc/Documentation/CodingStyle
retrieved January 20, 2016

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 86

Sources (cont.)

[16] Cline M.: C++ FAQs (owner): private communication, 2011.

[17] Meyers S.: Effective C++.
AddisonWesley 2nd Ed. (1998), 3rd Ed. (2005)

[18] Meyer B.: Object Oriented Software Construction.
Prentice Hall PTR 2nd Ed. (1997)

[19] Sommerville I.: Software Engineering.
Pearson Education Inc. 9th Ed. (2011)

[20] Jongerius J.: Bug-Free C, Retrieved September 5, 2017

http://www.duckware.com/bugfreec/index.html

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 87

Is Software So Bad?

• The most amazing achievement
of the computer software industry
is its continuing cancellation
of the steady and staggering gains �
made by the computer hardware industry.
– Henry Petroski (Historian of Technology)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 88

Why Software is So Bad?

• “Why software is so bad?” (2002) [1]
• “Why Software Fails” (2005) [2]
• M. Minasi: “The Software Conspiracy” (1999) [3]
• An Interview w. Jerry Weinberg (2001) [4]

Q. “What … major milestones of software engineering
discipline in the last three decades?”

JW: “Well, I don’t think there have been any.”
Q. “Really?” JW: [explaining]
Q. “… what about … testing …?”
JW: “… it has just made them sloppier developers;

they are just more encouraged to throw stuff
over the wall to testing.”

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 89

Some Quality Software Characteristics

.

• Correct - Meets functional specifications.

• Useful - Meets customer expectations.

• Robust - External: Resistant to user /environment errors.

White Internal: Easy to modify /enhance.

• Friendly - Easy to learn /use (human engineering).

• Efficient - Where required.

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 90

The Basic Assumptions

Quoting Bjarne Stroustrup (the father of C++):

“Computer science must be at the center
of software systems development.”

'�������������������
������(�����!�)*+*

“… [C]orrectness, efficiency, and
comprehensibility are closely related.
Getting them right requires essentially
the same tools .” (and same mindset [YMK])

�,,,�'�����
���(�����!�)*+)

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 91

Computer Science and SW Development

Computer science must be at the center
of software systems development. If it is
not, we must rely on individual experience
and rules of thumb, ending up with less
capable, less reliable systems, developed
and maintained at unnecessarily high cost.
We need changes in education to allow for
improvements of industrial practice.

��������	�
��	��
�� �������������	
��
��

����
�������
����

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 92

Software Development for Infrastructure

It isn’t enough to be disciplined in our specification
of data structures and interfaces: we must also
simplify our code logic. Complicated control
structures are as dangerous to efficiency and
correctness as are complicated data
structures .

[C]orrectness, efficiency, and comprehensibility
are closely related. Getting them right requires
essentially the same tools.

��������	�
��	��
�� ����
������
��
�������
����

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 93

What about Performance (efficiency)?

Did I forget them? None in the least
������������������������ it’s a practical requirement, not abstract; like correctness, and robustness

������������������������

Efficiency comes from roughly three sources:

• Algorithms (has nothing to do with the code)

• Implementing algorithms (#) (depends on code)

• HW related code tweaks (may break code structure)

(#) Only this one (2nd) depends on coding rules

����������������������	������� ���	��������
���
�

August Penguin – Bug Free SW. 2017 © by Yechiel M. Kimchi 94

Practical Rules – Independence

Landmarks for goto and global variables:

• Dijkstra E. W.: Letters to the editor: goto statement

considered harmful. Comm. ACM (1968)

• Wulf W., Shaw M.: Global variable considered harmful.

ACM SIGPLAN Notices (1973)

– They don’t say that global variables are worse than goto s

• S. Saariste: Resist the temptation of the singleton pattern.

In “97 Things Every Programmer Should Know” (2010)

– Nowadays, the singletonpattern is considered an anti-pattern.

