
Cloudius Systems presents:

SEASTAR @ August Penguin 2017
Avi Kivity (@AviKivity)
AugustSeptember 2017

Seastar:
A C++ Asynchronous Programming
Framework

Multi-domain async programming
Async networking
Async storage I/O
Async communications for multi-core, NUMA

RESULTS

RESULTS (2)

THREADING MODELS
Before: Thread model After: SeaStar shards

Traditional threading model

Kernel

Application

TCP/IPScheduler

queuequeuequeuequeuequeuethreads

NIC
Queues

Kernel

Memory

Seastar model

Application

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel
(isn’t

involved)

Userspace

Application

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel
(isn’t

involved)

Userspace

Application

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel
(isn’t

involved)

Userspace

Application

TCP/IP

Task Scheduler
queuequeuequeuequeuequeuesmp queue

NIC
Queue

DPDK

Kernel
(isn’t

involved)

Userspace

Dual networking stacks

Networking API

Seastar (native) Stack POSIX (hosted) stack

Linux kernel (sockets)

User-space TCP/IP

Interface layer

DPDK
Virtio Xen

igb ixgb

Seastar model summary
● Each logical core runs a shared-nothing run-to-completion task

scheduler
● Logical cores connected by point-to-point queues
● Explicit core-to-core communication
● Shard owns data
● Composable Multicore/Storage/Network APIs
● Optional userspace TCP/IP stack

CODING IT:
Futures and promises

BASIC MODEL
● Futures
● Promises
● Continuations

F-P-C Defined: Future
A future is a result of a computation that may not be available yet.
● Data buffer from the network
● Timer expiration
● Completion of a disk write
● Computation on another core
● Result of computation that requires the values from one or

more other futures.

F-P-C Defined: Promise
A promise is an object or function that provides you with a future,
with the expectation that it will fulfil the future.

F-P-C Defined: Continuation
A continuation is a computation that is executed when a future
becomes ready (yielding a new future).

Basic Future/Promise
future<int> get(); // promises an int will be produced eventually

future<> put(int) // promises to store an int

future<> f() {

return get().then([] (int value) {

return put(value + 1).then([] {

std::cout << "value stored successfully\n";

});

});

}

Parallelism
void f() {

 std::cout << "Sleeping... " << std::flush;

 using namespace std::chrono_literals;

 sleep(200ms).then([] { std::cout << "200ms " << std::flush; });

 sleep(100ms).then([] { std::cout << "100ms " << std::flush; });

 sleep(1s).then([] { std::cout << "Done.\n"; engine_exit(); });

}

Zero-copy
future<temporary_buffer<char>> connected_socket::read(size_t n);

temporary_buffer points at driver-provided pages if possible
discarded after use

I/O Scheduling

Query

Commitlog

Compaction

Queue

Queue

Queue

Userspace
I/O

Scheduler
Disk

Max useful disk concurrency

Rich APIs
● HTTP Server
● HTTP Client
● RPC client/server
● map_reduce
● parallel_for_each
● iostreams
● iosched
● threads!

● sharded<>
● when_all()
● timers
● sleep
● semaphore
● gate
● pipe/queue
● Memory reclaimer

Coming soon
CPU Scheduler
● Multiplex CPU intensive

tasks and I/O intensive
tasks on the same core

● Controlled impact on
latency

Coroutines
future<> f() {

 auto value = co_await get();

 co_await put(value + 1);

 std::cout << "value stored\n";

 co_return;

}

USE CASES

Applicability
● High I/O to compute ratio
● High concurrency
● Mix of disk and network I/O
● Complex loads
● Cluster (sharded) applications

Applicability
● Distributed databases
● Object stores, file systems
● Complex proxies/caches

MORE INFORMATION
http://github.com/scylladb/seastar
http://seastar-project.com
http://docs.seastar-project.com
https://github.com/scylladb/seastar/wiki/Seastar-Tutorial
@ScyllaDB

https://github.com/cloudius-systems/seastar/wiki/Seastar-Tutorial

Thank you.

